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Approximate analytic expressions for the guided modes. The exact analytic form for the guided modes of
cylindrical myelinated axons with the unconventional fiber geometry (the refractive index of the cladding higher than
the core) would involve linear combinations of different Bessel functions, similar to those in [S1]. However, we can
come up with much simpler approximate expressions of the mode profiles observing those generated by the software.
The cylindrically symmetric modes used in our simulations (identical to Fig. 1b–e from the main text) have a radial
intensity dependence that is very close to a Gaussian, with peak intensity at the center of the myelin sheath, and with
continuously decreasing intensity on both sides. The beam diameter corresponds to some fraction of the thickness of
the myelin sheath (intensity of the form Ae−(r−r0)

2/(2σ2), where A, r, r0, and 4σ are the amplitude, radial coordinate,
the radial distance of the center of the myelin sheath, and the beam diameter respectively). The fraction can be
estimated by knowing the fraction of the optical power inside the myelin sheath (e.g. 95.4 % power in the myelin
would imply that 4σ = d, where d is the myelin sheath thickness). Note that this discussion about the approximate
Gaussian shape of the field intensity is just to provide an intuition about the modes. In all our simulations, we use
the modes directly generated by the software, and not the ones based on these simple approximate expressions.

In Supp. Fig. 1, we tabulate the modal fraction (fraction of the total power of a mode) inside the myelin sheath
for different axon calibers and different wavelengths to illustrate their confinement. The power confined in the myelin
sheath varies from 99.58 % for the best confined mode in the thickest axon in our simulations to 82.13 % for the least
confined mode in the thinnest one, which is still higher than the typical confinement in the core of practical single
mode fibers [S2] used for communication over tens of kilometres. Good confinement is necessary to limit interactions
with the inhomogeneous medium inside and outside the axon. The scatterers inside the axon are the cell organelles,
e.g. mitochondria, microtubules, and neurofilaments, whereas on the outside there are different types of cells, e.g.
microglia, and astrocytes. There are guided modes with much weaker power confinement in the myelin sheath (less
than 50 %). However they might soon be lost to the inhomogeneities, and are therefore neglected. Supp. Fig. 1
also explicitly lists the thickness of the myelin sheath (d), the longest permissible wavelength (λmax), the wavelength
corresponding to the central permissible frequency (λint), and the shortest wavelength (λmin) for each axon caliber. To
remind the readers, for different axon calibers, we send in light at different wavelengths, ranging from 0.4 µm (chosen
to avoid absorption by the proteins) to the thickness of the myelin sheath, or 1.3 µm (the upper bound of the observed
biophoton wavelength), whichever is smaller for good confinement in the myelin sheath (at least 80 %). We call this
upper wavelength bound the longest permissible wavelength (λmax). The shortest permissible wavelength (λmin) for
all simulations is 0.4 µm. In addition to λmax, and λmin, we choose an intermediate wavelength corresponding to
the central permissible frequency (mid-frequency of the permissible frequency range), denoted by λint. In a single
simulation, FDTD calculates the input mode at λint and sends light at different wavelengths with the same spatial
mode profile. Note that for the thinnest axons considered, λmax= λint= λmin=0.4 µm (d=0.4 µm, too, for good
confinement).
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1 0.40 0.40 0.40 0.40 82.13 82.13 82.13

2 0.80 0.80 0.53 0.40 82.13 91.49 95.44

3 1.20 1.20 0.60 0.40 82.30 95.47 98.28

4 1.60 1.30 0.61 0.40 87.67 97.62 99.19

5 2.00 1.30 0.61 0.40 92.17 98.68 99.58

Supplementary Figure 1. Modal confinement in the myelin sheath. Range of permissible wavelengths for different myelin
thicknesses and the percentage of power confined in the myelin sheath for those wavelengths.

Next, we shall discuss effects of a few imperfections in detail, expanding on the points mentioned in the main text.

Continuously varying non-circular cross-sectional shape. The cross-sectional shape of an axon changes in
the longitudinal direction. In our model, we twist an axon, such that it starts out with an elliptical cross-section
with semi-major and semi-minor axes a and b respectively, interchanges the axes midway (25 µm) and reverts to its
original shape at the end of the segment (50 µm). Since the cross-section is continuously changing, the guided modes
at each section change too. An appropriate way to quantify the loss in such a structure would be to incident an
eigenmode of a cylindrical waveguide (circular cross-section), and observe its transmission at the other end. Supp.



2

a

b

c

d

Tr
an
sm
is
si
on
(%
)

● ● ● ● ●

●

●

■ ■
■

■

■

■

■

◆ ◆
◆

◆

◆

◆

◆
0.5 1.0 1.5 2.0 2.5

90

92

94

96

98

100

● λ=1.30 μm

■ λ=0.612 μm

◆ λ=0.40 μm

Change of the aspect ratio (Δ AR) per 50 μm

λ=longest permissible

Tr
an
sm
is
si
on
(%
)

● ● ● ● ●■
■

■ ■ ■

◆

◆ ◆

◆

◆

▲

▲
▲

▲

▲

1 2 3 4 5

94

96

98

100

● Δ AR=0.40

■ Δ AR=0.81

◆ Δ AR=1.67

▲ Δ AR=2.64

Mean radius of the axon including the myelin sheath (µm)

λ=corresponding to the central permissible frequency

Tr
an
sm
is
si
on
(%
)

● ● ● ●
●

■
■ ■ ■ ■

◆ ◆
◆

◆
◆

▲

▲

▲

▲

▲

1 2 3 4 5

92

94

96

98

100

● Δ AR=0.40

■ Δ AR=0.81

◆ Δ AR=1.67

▲ Δ AR=2.64

Mean radius of the axon including the myelin sheath (µm)

λ=0.4 µm

Tr
an
sm
is
si
on
(%
)

● ● ● ● ●■
■ ■

■ ■◆
◆ ◆

◆ ◆▲

▲

▲

▲

▲

1 2 3 4 5

88

90

92

94

96

98

100

● Δ AR=0.40

■ Δ AR=0.81

◆ Δ AR=1.67

▲ Δ AR=2.64

Mean radius of the axon including the myelin sheath (µm)

e

f

g

h

Supplementary Figure 2. Continuously varying non-circular cross-sectional shape. (a)-(b) The refractive index profile of
a myelinated axon in the X-Y plane and the X-Z plane respectively. The semi-major and semi-minor axes of the ellipses denoting the
axonal boundaries at the start of the segment are 3.75 µm, and 2.25 µm respectively (the corresponding axes for the myelin sheath’s outer
boundaries are 5.75 µm, and 4.25 µm respectively). (c)-(d) Magnitude of the electric field in the longitudinal direction (EFPL), as an
eigenmode of a cylindrical waveguide (r = 3 µm, r′ = 5 µm, and λ = 1.3 µm) crosses the axonal segment in the X-Y plane and the X-Z
plane respectively. (e) Transmission as a function of the change in the aspect ratio (∆AR); ∆AR is defined as change in the ratio of the
axes of the ellipse along two fixed orthogonal directions (here the Y and Z axes). The mean of the semi-axes of the axonal ellipse is 3 µm
(corresponding mean for the myelin sheath’s outer boundary is 5 µm). (f)-(h) Transmission as a function of the axon caliber for different
wavelengths and different ∆AR.
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Fig. 2a, and Supp. Fig. 2b show the longitudinal cross-section of the structure in 2 different planes (here, the X-Y
and the X-Z planes). Supp. Fig. 2c–d depict the magnitude of the electric field along the length of an axon in those
planes, as a cylindrically symmetric eigenmode of a cylindrical waveguide (r = 3 µm, r′ = 5 µm, and λ = 1.3 µm),
identical to Fig. 1b–e from the main text, passes by. We call this EFPL (Electric Field Profile in the Longitudinal
direction). Supp. Fig. 2e shows the total power transmission (calculated by integrating the real part of the Poynting
vector of the output light directly across the required area, and dividing it by the source power) upto a wavelength
away from the myelin sheath boundaries, as a function of the change in the aspect ratio (defined as the change in the
ratio of the axes of the ellipse along two fixed orthogonal directions, here the Y and Z axes) of the ellipse per 50 µm.
We notice that longer wavelengths transmit better. We see transmission as a function of axon caliber in Supp. Fig.
2f–h. Supp. Fig. 2f, dealing with transmission for the longest permissible wavelengths, shows an interesting dip in
transmission for r ′=2 µm, and r ′=3 µm. Comparing the transmissions for certain axon caliber (e.g. r ′=2 µm, and
r ′=3 µm), and different wavelengths in Supp. Fig. 2f–h, we observe that the intermediate wavelength has a larger
transmission. We note from Supp. Fig. 1 that λmax = d for them, while for thicker myelin sheaths, i.e. r ′=4 µm, and
r ′=5 µm, λmax < d. These observations suggest that there is an intermediate wavelength somewhere between d and
λmin (not necessarily λint) where transmission is maximized. The propagation loss can be understood as a coupling
loss between subsequent cross-sections (infinitesimally apart from each other). Shorter wavelengths have a higher
number of guided modes at each cross-section than longer wavelengths, but the input mode at a shorter wavelength
can get distorted more too (by exciting higher-order modes). If it is distorted beyond a certain extent, light in those
higher-order modes would be lost in subsequent cross-sections that do not have similar modes. Or if these higher
order modes are at a wavelength away from the myelin sheath boundaries, they are not included in the transmission.
So there is a competition between the number of available modes to couple to, and the extent of distortion. An
intermediate wavelength turns out to be optimum. Also, for larger ∆AR, and short wavelengths, thinner axons are
better, suggesting the relevance of the absolute value of the change in the ellipse’s axes. The transmission for close
to ∆AR (per 50 µm) = 0.40 is close to unity for all the cases discussed. Note that the approximate equivalence
of the elliptical shape and a randomly shaped cross-section for transmission of a circular mode is discussed in the
Supplementary Methods.

Cross talk between axons. The neurons might be close to, or in contact with other neurons or non-neuronal cells
in the brain (e.g. glia cells). Light in a myelinated axon would not leak out significantly, even if placed in direct
contact with cells of lower refractive indices than the myelin sheath. However, if two or more myelinated axons are
placed very close to each other (side by side), then light could leak out from one to the other. Supp. Fig. 3a shows the
longitudinal refractive index profile of 2 axons (r ′ = 4 µm) touching each other, and Supp. Fig. 3b is the EFPL (for
those axons) when an input mode with wavelength 0.4 µm is incident on one of them. In Supp. Fig. 3c, we notice that
shorter wavelengths stay confined in the myelin sheath better, as expected. Supp. Fig. 3d–f deal with transmission (see
Supplementary Methods for the procedure to quantify transmission) in the myelin sheath for different axon calibers,
different wavelengths, and different separation between the axons. As a general rule, axons should be a wavelength
away from one another to avoid cross talk, although the confinement for the same wavelength for different axon
calibers can be quite different. Multimode waveguides (greater caliber) confine light much better than those with a
few modes for a particular wavelength.

For our simulations, we considered cross talk between identical axons, which is stronger than that between non-
identical ones. Also, the cross-talk between axons does not imply irretrievable loss. For perfectly identical optical
fibers placed in contact, it is known that there is a complete power transfer from one to the other periodically [S3].
Moreover, extrapolation of the transmission for greater axon length is not straightforward, as light could propagate
in the guided modes of the composite structure (many axons touching each other), with fluctuations (or oscillations)
in power from one to the other. Since the most important source of loss (more so for the smaller wavelengths) here
is light leaking into the myelin sheath of a different axon (and not the inside of the axons or outside), on average
the power should be divided equally among the axons touching each other, provided that the segments in contact
are long enough. Extrapolation from the data in Supp. Fig.3 as an exponentiation of the fraction of the power
transmitted through 50 µm should therefore be interpreted as a strict upper bound on the loss. Moreover, this might
be a mechanism for information transfer between axons, leading to a collective behaviour of neurons in a nerve fiber
(several axons bunched close together for a considerable length).

The power loss when the axons touch each other under different spatial orientations is significantly less. For example,
when two axons cross perpendicular to each other, the power loss is less than 0.5 % for all the axon calibers.
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Supplementary Figure 3. Cross talk between axons. (a) The refractive index profile of 2 axons touching each other (r ′ = 4 µm).
(b) EFPL as the input mode with wavelength 0.612 µm crosses the region. (c) Transmission as a function of the separation between
axons for different wavelengths (r ′ = 5 µm). (d)-(f) Transmission as a function of the axon caliber for different wavelengths and different
separation between axons.

Guided modes inside the axon. We have taken the refractive indices of the axon, the myelin sheath, and the
medium outside as 1.38, 1.44, and 1.34 respectively for almost all our simulations. A vast majority of the modes of
such a waveguide are confined strongly in the myelin sheath if it is thick enough. However, a few guided modes exist
which have a greater fraction of optical power inside the axon than in the myelin sheath even if the myelin sheath is
thick, and the wavelength is small. This is true if the axon has a greater refractive index than the medium outside
the myelin sheath, and is sufficiently thick (true if the myelin is thick and the g-ratio = 0.6). In the main text, we
were particularly conservative and ignored the guided modes inside the axon, and treated them as loss, because we
are not sure about the relevant light-guidance parameters inside the axon (see the later discussion on scatterers inside
the axon). Without ignoring them, the transmission for all the inhomogeneities would be slightly better. Especially
for the long paranodal regions, where some light inevitably leaks into the axon, one sees a clear difference.

Nodal and paranodal regions with inclusion of the guided modes inside the axon. Let’s be optimistic and
assume that the inside of the axon is homogeneous (has a constant refractive index of 1.38) to obtain an upper limit
on the transmission as light crosses the nodal and paranodal regions. In Supp. Fig. 4, we plot the modal transmission
(power transmission in all the guided modes of the myelinated axon) after two paranodes and a node in between.
We shall call two paranodes with a node in between a PNP (Paranode-Node-Paranode) region. We notice that for
p-ratio = 2.5, almost all the light for different axon calibers stays in the guided modes within a wavelength span
from the myelin sheath (comparing it with Fig. 2c–f in the main text, where we took the transmission in the guided
modes only upto a wavelength away from the myelin sheath boundaries). Also, for longer paranodal regions, the
smaller wavelengths scatter more into the axon (and also in the medium outside the myelin sheath) than the longer
wavelengths, as is evident from the difference in the transmission as compared to Fig. 2c–f in the main text. As
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Supplementary Figure 4. Nodal and paranodal region with inclusion of the guided modes inside the axon. (a) Transmission
in all the guided modes as a function of lparanode/d (p-ratio), where lparanode is the length of a paranode, and d is the thickness of the
myelin sheath. The p-ratio is varied by changing the length of the paranode, keeping the axon caliber constant (r = 3 µm, and r′ = 5 µm).
(b)-(d) Transmission in the guided modes as a function of the axon caliber for different wavelengths and different p-ratios.

an example, the transmission in all the guided modes for λ = 0.4 µm and r ′ = 5 µm is 67.09 %, but that within a
wavelength span of the myelin sheath is only 33.78 %. In a realistic scenario where there are scatterers inside the
axon, the transmission would lie between these values. So, the plots in Supp. Fig. 4 should be interpreted as an upper
bound on the transmission and Fig. 2c–f in the main text should be interpreted as a lower bound.

Subsequent nodal and paranodal regions. If the inhomogeneities in the rest of the internodal length is within the
acceptable values, there would be no more loss as the rest of the light is in the guided modes. However, since there is
mixing of modes as light passes through the paranodal regions, one might wonder how the mixture of modes behaves
as it encounters the next PNP region (after an internodal length). Supp. Fig. 5 shows the transmission in the guided
modes after subsequent PNP regions for different axon calibers and different wavelengths for p-ratio = 2.5. Note
that the transmission is re-normalized to unity after each PNP region, such that the total modal transmission after 3
PNP regions is the product of the modal transmission after each of these regions. In general, the longest permissible
wavelengths (weakly confined) get better or almost saturate after 3 PNP regions. For shorter wavelengths, the modal
transmission after each segment is less predictable since they are more prone to distortions in the shape of the myelin
and undergo significant mode mixing. However, for most of the cases, the modal transmission fluctuates both ways
(increases and decreases), and an average close to the first pass is approximately true. Thus, we can approximately
predict the modal transmission after multiple PNP regions by exponentiating the modal transmission through one.

Effect of the scatterers and possibility of light guidance inside the axon. There are many potential scatterers
inside the axon, e.g. microtubules, mitochondria, agranular endoplasmic reticulum, and multivesicular bodies. We
would not only need the refractive indices of these structures, but also their shapes, sizes and spatial distribution,
to accurately predict their effect on light guidance. We have little relevant (and sometimes conflicting) data. For
instance, Sato et al. measured the refractive index of microtubules to be 1.512 [S4], but Mershin et al. measured
the refractive index of tubulin, the building block of microtubules to be 2.9 [S5]. Microtubules are one of the most
numerous structures inside the axon, forming the cytoskeleton and a rail-road for the transport of materials inside
the axon. The density of microtubules varies during the axon differentiation from ∼1 % in the initial phase to ∼3 %
during the most dense phase and again drops (to a value we do not know) [S6].

To study the scattering effects of the microtubules on our previous simulations, we distribute them randomly (but
according to a uniform distribution) such that they occupy ∼2 % of the volume inside the axon. Their refractive
index is taken to be 1.5 and they are placed in a medium of refractive index 1.38. We had seen that in a few of our
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Supplementary Figure 5. Subsequent PNP regions. (a) Geometry of 3 PNP regions placed sequentially. A PNP (Paranode-
Node-Paranode) region is defined as two facing paranodes with a node in between. The discontinuity between two PNP regions implies
the presence of a straight and uniform internode there. (b)-(f) Transmission in all the guided modes as a function of the number of PNP
regions for different wavelengths and different axon calibers. Note that the transmission is normalized to unity after each PNP region,
such that the total modal transmission after 3 PNP regions is the product of the modal transmission after each of these regions.

previous simulations, some fraction of optical power leaked into the axon, e.g. for large variation in the cross-sectional
area, and paranodal regions. We ran the simulations again, this time in the presence of the microtubules. We found
negligible variation in the transmission, both inside and outside the axon (± ∼1 %). Even the light that leaked into
the axon did not scatter much in the presence of the microtubules (owing to their small size and close to uniform
distribution).

There are proposals of light guidance by the microtubules and mitochondria inside the axon [S7–S9]. But they are
too tiny for this to be realistic in the observed biophotonic wavelength range. Mitochondria are typically less than
a few microns long, and microtubules are too thin (tubular structures with the inner and outer diameters as ∼12
nm and ∼24 nm respectively) to confine light in the biophotonic wavelength range (waveguide dimension should be
comparable to the wavelength of light). However, if we assume that the microtubules are uniformly distributed, we can
approximately average the refractive index of the composite system comprising of the axonal fluid and microtubules
as

√
f × n2m + (1 − f) × 1.342, where f and nm are the volume fraction and the refractive index of the microtubules

respectively, and 1.34 is the refractive index of the fluid inside the axon. The average is possible since the microtubules
are much smaller than the wavelength of light, and so is the average separation between them [S6]. We could wonder
whether this composite system can guide light, which is only possible if the inside of the axon has a higher refractive
index than the medium outside. If the refractive index of the microtubules is 1.5, then a typical volume fraction, e.g.
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1.7 % would give navg = 1.343, and if the refractive index is 2.9, then navg = 1.381. Since the observed refractive
indices inside the axon in both the longitudinal and the transverse directions are in a broad range (1.34–1.38 in [S10],
and 1.35–1.40 in [S11]), assuming the axon as a uniform medium with refractive index 1.38 is not entirely correct.
Moreover, the axons can be in direct contact with glia cells which can have comparable refractive indices as the inside
of the axon. This would prevent guided modes to exist inside the axon. Note that if the refractive index of the axon is
lower than 1.38, most of our simulations in the main text will yield slightly better transmission as the light guidance
mainly depends on the refractive index contrast. And if the refractive index of the outside is greater than 1.34, the
transmission will suffer slightly. However, since the refractive index of the myelin sheath is much larger than both the
regions, these effects would not be too significant for most of the simulations.

However, if we assume that the axons are not in contact with other glia cells, and have a higher refractive index
than the interstitial fluid outside, then weak guidance might still be possible if the mode does not scatter off of the
bigger (but less numerous) scatterers (e.g. mitochondria, Endoplasmic Reticulum, and vesicles). We do not know the
volume fraction of these scatterers precisely but some work, e.g. [S12] suggest that they occupy at least 10 % of the
volume. We model these scatterers as ellipsoids with the 3 semi-minor axes ranging from 0.1 µm to 0.4 µm, 0.1 µm to
0.4 µm, and 1 µm to 3 µm respectively and place them in axon with r ′ = 5 µm. Their refractive indices are taken to
be 1.4. Let’s take 2 different values of the refractive index of the axon. For a value 1.38, the total power transmission
(calculated by integrating the real part of the Poynting vector of the output light directly across the required area,
and dividing it by the source power) upto a wavelength away from the axonal boundaries in a 100 µm long structure
for a mode confined inside the axon at wavelength 0.612 µm is 75.47 %, while for 1.3 µm wavelength, the transmission
is 95.93 %. If the axon’s refractive index is 1.35, then the transmission for the wavelength 0.612 µm is 16.06 %, while
no guided modes exist for the wavelength 1.3 µm. A lower density of these scatterers, or smaller sizes, (or larger
wavelengths than 0.612 µm) would, of course yield greater transmission. The transmission for 0.612 µm wavelength
light is different for different refractive index values of the axon because scattering depends strongly on the refractive
index contrast. A mitochondrion (refractive index 1.40) placed in a medium with refractive index 1.35 would act as a
much stronger scatterer than if placed in a medium with refractive 1.38. Thus, an average uniform refractive index of
1.38 for the axon might still guide light at large wavelengths, but an average uniform refractive index of 1.35 seems
more believable (assuming the refractive index of microtubules to be ∼1.50). In this case, the bigger scatterers lead to
significant loss, even if the microtubules themselves do not. Therefore, we do not believe that there could be guided
modes inside the axon which can transmit efficiently.

We again ran many of our previous simulations (with the input mode confined primarily in the myelin sheath)
in the presence of all these scatterers inside the axon. We varied the refractive index of the axon from 1.34 (the
refractive index of the medium outside) to 1.38. We verified that light well confined in the myelin sheath does not see
these scatterers at all. Even when the light diverges into the axon because of the geometry of the structure (e.g. the
varying cross-sectional area), there is still not a dramatic variation in the transmission. Both the transmission in the
myelin sheath up to a wavelength away from the boundaries, and the total transmission across the whole cross-section
(including the inside of the axon) do not change greatly; the observed variation was on the order of a few percent. Note
that for a few simulations, ∼15–20 % of the fraction of output light can be inside the axon. The light diverging inside
need not even be in the guided modes of the waveguide. This runs counter to intuition, since we saw that a guided
mode inside the axon scattered badly. This unintuitive phenomenon can be explained again by the unconventional
nature of this waveguide, where all the light leaking inside is not irretrievably lost (even if it is not in the guided
modes of the structure). It can come back to the myelin sheath without interacting strongly with the scatterers. This
shows that we might have been too conservative while considering the power only within a wavelength of the myelin
sheath boundaries. However, there still might be other phenomena happening (e.g. absorption) inside the axon, and
we prefer to be cautious about the inside.

Next, we shall see how varying the refractive index of the axon affects the transmission of a mode (confined primarily
in the myelin sheath) in the PNP region.

Varying the refractive indices of the axon and the cytoplasmic loops. We have observed that the paranodal
regions might be the main contributor to loss (if the other inhomogeneities are low). For our simulations so far, we
have assumed that the refractive index of the cytoplasmic loops is the same as that of the axon (1.38). As far as
we know, no direct measurement of the refractive index of these loops has been performed, but they are however
considered ‘dense’ [S13].Since these loops are part of glia cells, which usually have higher refractive indices, these
loops might have higher refractive indices than the inside of the axon too. In Supp. Fig. 6, we show the result of
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Supplementary Figure 6. Nodal and paranodal regions for a different set of refractive indices. The refractive indices of
the axon and the cytoplasmic loops are taken as 1.34 and 1.38 respectively. (a) Transmission in all the guided modes as a function of the
p-ratio for different wavelengths (r ′ = 5 µm). (b)-(d) Transmission in the guided modes as a function of the axon caliber for different
wavelengths and different paranodal lengths.

another set of simulations where the refractive index of the axon is kept the same as the medium outside (1.34),
and that of the loops is higher (1.38). We find that in almost all the cases (different paranodal lengths, different
wavelengths, and different axon calibers), the transmission in the guided modes is higher as compared to the previous
set of simulations (see Fig. 2c–f in the main text). If cytoplasmic loops have a higher refractive index, then they
prevent the mode from diverging into the axon, and serve as weak waveguides themselves. Note that for the same
refractive index of the axon and the cytoplasmic loops (e.g. 1.35 each), the results would be similar to those when
both had their refractive indices 1.38.

Mathematics of mode expansion and transmission calculation. We have often mentioned the expansion of the
output field in the basis of guided modes, and the calculation of the transmission by evaluating the Poynting vector,
integrating its real part across the area of interest and dividing it by the input power. Here we give the mathematics
of these procedures.

Let the electric (E) and magnetic (M) field profiles (frequency domain) of the light incident in the axon be denoted

by
#»

Ein, and
#»

Hin respectively, and the field profiles of the light at the terminal end of the axon segment in the
transverse plane (perpendicular to the length) be denoted by

#»

Eout, and
#»

Hout respectively. We can express

#»

Eout =
#»

Eguided +
#»

Enon−guided
#»

Hout =
#»

Hguided +
#»

Hnon−guided
(S1)

where
#»

Eguided, and
#»

Hguided are the fields for the fraction of light in the finite number of guided modes of the waveguide,

and
#»

Enon−guided, and
#»

Hnon−guided are the fields for the fraction in the infinite number of non-guided modes. Light in
the non-guided modes of a uniform structure would be lost eventually. The guided part can further be expanded as

#»

Eguided =
∑
i

(ai
#»

Eforwardi + bi
#»

Ebackwardi )

#»

Hguided =
∑
i

(ai
#»

Hforward
i − bi

#»

Hbackward
i )

(S2)

where
#»

Ei, and
#»

Hi are the fields corresponding to a guided mode φi, and ai and bi are the transmission coefficients
for the forward and backward propagating waves respectively. The summation is over the entire set of the orthogonal
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guided modes of the structure. The coefficients are given in terms of the overlap integrals as

ai = 0.25 × (

∫
(

#»

Eguided ×
#»

H∗i ) ·
#  »

dS

Pi
+

∫
(

#»

E∗guided ×
#»

Hi) ·
#  »

dS

P ∗i
)

bi = 0.25 × (

∫
(

#»

Eguided ×
#»

H∗i ) ·
#  »

dS

Pi
−

∫
(

#»

E∗guided ×
#»

Hi) ·
#  »

dS

P ∗i
)

(S3)

where
#  »

dS is the differential area element in the transverse plane of interest, and the complex power of the ith mode
φi is

Pi = 0.5 ×
∫

(
#»

Ei ×
#»

H∗i ) ·
#  »

dS (S4)

The percentage transmission into all the guided modes of the structure is given by

T =
0.5 ×

∫
Re(

#»

Eguided ×
#»

H∗guided) ·
#  »

dS

0.5 ×
∫
Re(

#»

Ein × #»

H∗in) · #  »

dS
× 100 (S5)

Here,
#»

S guided =
#»

Eguided ×
#»

H∗guided is the time averaged Poynting vector for the guided fraction of the output light,
and Re() denotes the real part. Integration of the real part of the Poynting vector across an area quantifies the
time-averaged power flow through that area, while the integration of the imaginary part quantifies the reactive power
(e.g. because of interference due to a standing wave).

In specific contexts (in particular after the PNP regions, see Fig. 2c–f in the main text), we integrate the real part
of the Poynting vector (with the electromagnetic fields corresponding to the guided portion of the output light) across
the myelin sheath up to a wavelength away from the boundaries to obtain the percentage transmission

T =
0.5 ×

∫ ρ=r+λ
ρ=r−λ Re(

#»

Eguided ×
#»

H∗guided) ·
#  »

dS

0.5 ×
∫
Re(

#»

Ein × #»

H∗in) · #  »

dS
× 100 (S6)

where ρ is the radial coordinate, λ is the wavelength, and r and r′ are the inner and outer radius of the myelin sheath
as defined earlier. We include only the guided fraction of the light because the non-guided fraction is expected to
decay over the course of the long internode following the PNP region (provided that the internode is approximately
uniform).

In certain other instances (e.g. varying cross-sectional area and shape), where the cross-section continuously changes,
some fraction of light in the non-guided modes at a particular cross-section might be included in the the basis of
guided modes at an adjoining cross-section and vice-versa. Therefore, it is more appropriate to observe the total
power transmission (up to a wavelength of the myelin sheath boundaries) instead of the modal transmission. In such
cases we integrate the real part of the Poynting vector with the fields corresponding to the output light directly to
obtain the percentage transmission

T =
0.5 ×

∫ ρ=r+λ
ρ=r−λ Re(

#»

Eout ×
#»

H∗out) ·
#  »

dS

0.5 ×
∫
Re(

#»

Ein × #»

H∗in) · #  »

dS
× 100 (S7)

Supplementary Methods

Continuously varying non-circular cross-sectional shape. We simulate the effect of the change in the cross-sectional shape of an
axon in the longitudinal direction by twisting an elliptical axon. The semi-major and the semi-minor axes of the ellipse (a and b resp.) at x
= 0 (the starting point of the axon) are changed for different simulations. We incident an eigenmode of a circular axon with r = (a+ b)/2,
and r/r′ = 0.6. The myelin sheath boundary is another ellipse with its axes, a′ = a+d and b′ = b+d, where d = r′−r. The myelin sheath
is thus an approximate parallel curve to the axon. The shape of the axon changes continuously such that at one-fourth of the axonal
segment, it becomes a perfect circle with radius r = (a+ b)/2, at half the length, it interchanges its axes, and at the end of the segment
(50 µm), it resumes its original shape. The area of the cross-section remains almost constant by this twist (less than 10 % variation for all
the simulations). Different values of the change in the aspect ratio (∆AR) are obtained by adopting the same procedure for ellipses with
different semi-axes.
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An approximate equivalence between an elliptical shape and a random cross-sectional shape (as in the main text) can be established.

The equation of an ellipse in polar coordinates is ρ(θ) = ab/(
√

(b cos θ)2 + (a sin θ)2), where ρ is the radial coordinate and θ is the polar
angle from the a axis. The mean of the distance of the points from the origin is very close to r = (a+ b)/2 (less than 7 % variation for all
the simulations). In the main text, we generated random points according to a Gaussian distribution along the circumference of the cross-
section, and the s.d. of the separation of those points from a circle of radius r is taken as the degree of inhomogeneity. For an ellipse, the s.d.

of separation from a circle of radius r = (a+ b)/2 can similarly be calculated as
√

1/(2π)
∫ 2π
0 ((a+ b)/2 − ab/(

√
(b cos θ)2 + (a sin θ)2))2dθ

. We compare transmission in an elliptic (non changing cross-sectional area) waveguide, and a waveguide with an arbitrary cross-sectional
area with the same s.d for some of the simulations, and find that there is comparable or higher loss in an elliptical waveguide. This suggests
that an axon with changing cross sectional shape (random) along its length might also undergo similar loss as a twisting elliptical axon.
We quantify the change in aspect ratio (∆AR) as a measure of the change in the cross-sectional shape for elliptical shapes. For example, if
the cross-section is an ellipse with a = 3.9 µm, and b = 2.1 µm at x = 0, after the twisting procedure, ∆AR = 2× (3.9/2.1−2.1/3.9) = 2.64
(the factor 2 shows that it is twisted to get back to the original shape after the segment).

The transmission is calculated by integrating the real part of the Poynting vector across an area between 2 ellipses, one with the
semi-axes a+ d+ λ, b+ d+ λ, and the other with the semi-axes, a− λ, and b− λ, where λ is the wavelength of the light, and the other
symbols hold their previous meanings. The procedure adopted to account for the change in the mode profiles with wavelength is the same
as discussed in the Methods of the main text (e.g. as in bends). We divide the transmission for the larger wavelengths by the transmission
within a wavelength of the myelin sheath for a circular waveguide on sending in a mode with the central permissible frequency to obtain the
normalised transmission. The losses are in fact a combination of the insertion loss (coupling loss of the input light to the first cross section
it sees) and the propagation loss (can be understood as coupling losses for subsequent cross-sections), but as a conservative approach, we
allocate everything to the propagation loss. Under this assumption, we expect that an ellipse with a larger (or smaller) aspect ratio (a/b)
to start with, would have almost similar transmission if ∆AR is the same (for the same mean caliber r, i.e. (a+b)/2). For a waveguide
with arbitrary cross-sectional shape that changes continuously, an analogous picture (to the twisting of an elliptical waveguide) is to start
with some random shape, then reduce the randomness to reach a perfect circular shape, then increase the randomness again to arrive at a
shape with the axes reversed (a π/2 rotated form of the original shape), and carry out this procedure again to arrive at the original shape
at the end of 50 µm.

Cross-talk between axons. We place two identical axons side by side, send in light through one of them and note the power (by
integrating the real part of the Poynting vector across the myelin sheath only) transmitted across the same axon in which the mode was
incident. We divide the power for each wavelength by the power transmitted in the myelin sheath alone (not up to a wavelength) in the
absence of the second axon to obtain the normalised transmission.
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